Let’s look at an example of analysis of a polynomial function. The method is as follows:
Rule
Example 1
Analyze the function
Thus, or . The zeros of are thus , and .
Find the derivative of :
Then use the quadratic formula to find the maxima and minima of :
Thus, or .
To find the points, you need to find their corresponding -values. You find these by putting the -values you found back into the main function :
You now need to determine which point is a maximum and which is a minimum. You do that by drawing a sign chart. Notice that the derivative can be factorized as:
First, you find the second derivative of by differentiating :
Let and solve the equation:
Enter this -value into the original function to find the -coordinate for the inflection point:
By making a sign chart for the second derivative, you can see where the graph of is concave and where it is convex. Notice that can be factorized as :